Copied to
clipboard

G = C52⋊D9order 450 = 2·32·52

The semidirect product of C52 and D9 acting via D9/C3=S3

non-abelian, soluble, monomial, A-group

Aliases: C52⋊D9, (C5×C15).S3, C52⋊C91C2, C3.(C52⋊S3), SmallGroup(450,11)

Series: Derived Chief Lower central Upper central

C1C52C52⋊C9 — C52⋊D9
C1C52C5×C15C52⋊C9 — C52⋊D9
C52⋊C9 — C52⋊D9
C1

Generators and relations for C52⋊D9
 G = < a,b,c,d | a5=b5=c9=d2=1, cbc-1=ab=ba, cac-1=dad=a3b2, dbd=ab2, dcd=c-1 >

45C2
3C5
3C5
15S3
25C9
9D5
45C10
3C15
3C15
25D9
3D15
15C5×S3
9C5×D5
3C5×D15

Character table of C52⋊D9

 class 1235A5B5C5D5E5F9A9B9C10A10B10C10D15A15B15C15D15E15F15G15H
 size 14523333665050504545454566666666
ρ1111111111111111111111111    trivial
ρ21-11111111111-1-1-1-111111111    linear of order 2
ρ3202222222-1-1-1000022222222    orthogonal lifted from S3
ρ420-1222222ζ9792ζ9594ζ9890000-1-1-1-1-1-1-1-1    orthogonal lifted from D9
ρ520-1222222ζ9594ζ989ζ97920000-1-1-1-1-1-1-1-1    orthogonal lifted from D9
ρ620-1222222ζ989ζ9792ζ95940000-1-1-1-1-1-1-1-1    orthogonal lifted from D9
ρ7313ζ53+2ζ55255452ζ54+2ζ531-5/21+5/2000ζ52ζ5ζ54ζ53ζ54+2ζ53ζ53+2ζ554525251-5/21+5/21-5/21+5/2    complex lifted from C52⋊S3
ρ83-135255452ζ54+2ζ53ζ53+2ζ51+5/21-5/20005452535ζ53+2ζ5525ζ54+2ζ5354521+5/21-5/21+5/21-5/2    complex lifted from C52⋊S3
ρ9313ζ54+2ζ53ζ53+2ζ552554521+5/21-5/2000ζ5ζ53ζ52ζ545452ζ54+2ζ53525ζ53+2ζ51+5/21-5/21+5/21-5/2    complex lifted from C52⋊S3
ρ103-135452ζ54+2ζ53ζ53+2ζ55251-5/21+5/200053545525255452ζ53+2ζ5ζ54+2ζ531-5/21+5/21-5/21+5/2    complex lifted from C52⋊S3
ρ113-13ζ54+2ζ53ζ53+2ζ552554521+5/21-5/200055352545452ζ54+2ζ53525ζ53+2ζ51+5/21-5/21+5/21-5/2    complex lifted from C52⋊S3
ρ123135452ζ54+2ζ53ζ53+2ζ55251-5/21+5/2000ζ53ζ54ζ5ζ525255452ζ53+2ζ5ζ54+2ζ531-5/21+5/21-5/21+5/2    complex lifted from C52⋊S3
ρ133-13ζ53+2ζ55255452ζ54+2ζ531-5/21+5/20005255453ζ54+2ζ53ζ53+2ζ554525251-5/21+5/21-5/21+5/2    complex lifted from C52⋊S3
ρ143135255452ζ54+2ζ53ζ53+2ζ51+5/21-5/2000ζ54ζ52ζ53ζ5ζ53+2ζ5525ζ54+2ζ5354521+5/21-5/21+5/21-5/2    complex lifted from C52⋊S3
ρ156061+51-51+51-5-3+5/2-3-5/200000001-51+51+51-5-3+5/2-3-5/2-3+5/2-3-5/2    orthogonal lifted from C52⋊S3
ρ1660-31+51-51+51-5-3+5/2-3-5/20000000-1+5/2-1-5/2-1-5/2-1+5/2-3ζ3ζ54-2ζ3ζ523ζ53-2ζ5452-2ζ3ζ54-3ζ3ζ533ζ52354-2ζ53-3ζ32ζ54-2ζ32ζ5232ζ532-2ζ5452ζ3ζ53-3ζ3ζ52-2ζ3ζ53-2ζ525    orthogonal faithful
ρ1760-31+51-51+51-5-3+5/2-3-5/20000000-1+5/2-1-5/2-1-5/2-1+5/2-3ζ32ζ54-2ζ32ζ5232ζ532-2ζ5452ζ3ζ53-3ζ3ζ52-2ζ3ζ53-2ζ525-3ζ3ζ54-2ζ3ζ523ζ53-2ζ5452-2ζ3ζ54-3ζ3ζ533ζ52354-2ζ53    orthogonal faithful
ρ1860-31-51+51-51+5-3-5/2-3+5/20000000-1-5/2-1+5/2-1+5/2-1-5/2-2ζ3ζ54-3ζ3ζ533ζ52354-2ζ53-3ζ32ζ54-2ζ32ζ5232ζ532-2ζ5452ζ3ζ53-3ζ3ζ52-2ζ3ζ53-2ζ525-3ζ3ζ54-2ζ3ζ523ζ53-2ζ5452    orthogonal faithful
ρ196061-51+51-51+5-3-5/2-3+5/200000001+51-51-51+5-3-5/2-3+5/2-3-5/2-3+5/2    orthogonal lifted from C52⋊S3
ρ2060-31-51+51-51+5-3-5/2-3+5/20000000-1-5/2-1+5/2-1+5/2-1-5/2ζ3ζ53-3ζ3ζ52-2ζ3ζ53-2ζ525-3ζ3ζ54-2ζ3ζ523ζ53-2ζ5452-2ζ3ζ54-3ζ3ζ533ζ52354-2ζ53-3ζ32ζ54-2ζ32ζ5232ζ532-2ζ5452    orthogonal faithful
ρ2160-352+2ζ554+2ζ5254+4ζ5353+4ζ51+51-5000000053-2ζ5-2ζ52554-2ζ53-2ζ5452-1-5/2-1+5/2-1-5/2-1+5/2    complex faithful
ρ2260-354+4ζ5353+4ζ552+2ζ554+2ζ521+51-50000000-2ζ545254-2ζ53-2ζ52553-2ζ5-1-5/2-1+5/2-1-5/2-1+5/2    complex faithful
ρ2360-354+2ζ5254+4ζ5353+4ζ552+2ζ51-51+50000000-2ζ525-2ζ545253-2ζ554-2ζ53-1+5/2-1-5/2-1+5/2-1-5/2    complex faithful
ρ2460-353+4ζ552+2ζ554+2ζ5254+4ζ531-51+5000000054-2ζ5353-2ζ5-2ζ5452-2ζ525-1+5/2-1-5/2-1+5/2-1-5/2    complex faithful

Smallest permutation representation of C52⋊D9
On 45 points
Generators in S45
(1 42 32 11 26)(2 33 27 43 12)(3 34 19 44 13)(4 45 35 14 20)(5 36 21 37 15)(6 28 22 38 16)(7 39 29 17 23)(8 30 24 40 18)(9 31 25 41 10)
(1 32 26 42 11)(2 12 43 27 33)(4 35 20 45 14)(5 15 37 21 36)(7 29 23 39 17)(8 18 40 24 30)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)
(1 9)(2 8)(3 7)(4 6)(10 11)(12 18)(13 17)(14 16)(19 23)(20 22)(24 27)(25 26)(28 35)(29 34)(30 33)(31 32)(38 45)(39 44)(40 43)(41 42)

G:=sub<Sym(45)| (1,42,32,11,26)(2,33,27,43,12)(3,34,19,44,13)(4,45,35,14,20)(5,36,21,37,15)(6,28,22,38,16)(7,39,29,17,23)(8,30,24,40,18)(9,31,25,41,10), (1,32,26,42,11)(2,12,43,27,33)(4,35,20,45,14)(5,15,37,21,36)(7,29,23,39,17)(8,18,40,24,30), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45), (1,9)(2,8)(3,7)(4,6)(10,11)(12,18)(13,17)(14,16)(19,23)(20,22)(24,27)(25,26)(28,35)(29,34)(30,33)(31,32)(38,45)(39,44)(40,43)(41,42)>;

G:=Group( (1,42,32,11,26)(2,33,27,43,12)(3,34,19,44,13)(4,45,35,14,20)(5,36,21,37,15)(6,28,22,38,16)(7,39,29,17,23)(8,30,24,40,18)(9,31,25,41,10), (1,32,26,42,11)(2,12,43,27,33)(4,35,20,45,14)(5,15,37,21,36)(7,29,23,39,17)(8,18,40,24,30), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45), (1,9)(2,8)(3,7)(4,6)(10,11)(12,18)(13,17)(14,16)(19,23)(20,22)(24,27)(25,26)(28,35)(29,34)(30,33)(31,32)(38,45)(39,44)(40,43)(41,42) );

G=PermutationGroup([[(1,42,32,11,26),(2,33,27,43,12),(3,34,19,44,13),(4,45,35,14,20),(5,36,21,37,15),(6,28,22,38,16),(7,39,29,17,23),(8,30,24,40,18),(9,31,25,41,10)], [(1,32,26,42,11),(2,12,43,27,33),(4,35,20,45,14),(5,15,37,21,36),(7,29,23,39,17),(8,18,40,24,30)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45)], [(1,9),(2,8),(3,7),(4,6),(10,11),(12,18),(13,17),(14,16),(19,23),(20,22),(24,27),(25,26),(28,35),(29,34),(30,33),(31,32),(38,45),(39,44),(40,43),(41,42)]])

Matrix representation of C52⋊D9 in GL5(𝔽181)

10000
01000
001350102
0001250
0000125
,
10000
01000
00125014
000133
000042
,
127131000
50177000
00161138
00330100
0041020
,
5054000
4131000
000187
001094
00001

G:=sub<GL(5,GF(181))| [1,0,0,0,0,0,1,0,0,0,0,0,135,0,0,0,0,0,125,0,0,0,102,0,125],[1,0,0,0,0,0,1,0,0,0,0,0,125,0,0,0,0,0,1,0,0,0,14,33,42],[127,50,0,0,0,131,177,0,0,0,0,0,161,33,41,0,0,1,0,0,0,0,38,100,20],[50,4,0,0,0,54,131,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,87,94,1] >;

C52⋊D9 in GAP, Magma, Sage, TeX

C_5^2\rtimes D_9
% in TeX

G:=Group("C5^2:D9");
// GroupNames label

G:=SmallGroup(450,11);
// by ID

G=gap.SmallGroup(450,11);
# by ID

G:=PCGroup([5,-2,-3,-3,-5,5,101,66,182,2888,10804,4284]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^9=d^2=1,c*b*c^-1=a*b=b*a,c*a*c^-1=d*a*d=a^3*b^2,d*b*d=a*b^2,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C52⋊D9 in TeX
Character table of C52⋊D9 in TeX

׿
×
𝔽