non-abelian, soluble, monomial, A-group
Aliases: C52⋊D9, (C5×C15).S3, C52⋊C9⋊1C2, C3.(C52⋊S3), SmallGroup(450,11)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C52 — C52⋊C9 — C52⋊D9 |
C1 — C52 — C5×C15 — C52⋊C9 — C52⋊D9 |
C52⋊C9 — C52⋊D9 |
Generators and relations for C52⋊D9
G = < a,b,c,d | a5=b5=c9=d2=1, cbc-1=ab=ba, cac-1=dad=a3b2, dbd=ab2, dcd=c-1 >
Character table of C52⋊D9
class | 1 | 2 | 3 | 5A | 5B | 5C | 5D | 5E | 5F | 9A | 9B | 9C | 10A | 10B | 10C | 10D | 15A | 15B | 15C | 15D | 15E | 15F | 15G | 15H | |
size | 1 | 45 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | 50 | 50 | 50 | 45 | 45 | 45 | 45 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from D9 |
ρ5 | 2 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from D9 |
ρ6 | 2 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from D9 |
ρ7 | 3 | 1 | 3 | ζ53+2ζ5 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | ζ52 | ζ5 | ζ54 | ζ53 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ54+ζ52 | 2ζ52+ζ5 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | complex lifted from C52⋊S3 |
ρ8 | 3 | -1 | 3 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | ζ53+2ζ5 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | -ζ54 | -ζ52 | -ζ53 | -ζ5 | ζ53+2ζ5 | 2ζ52+ζ5 | ζ54+2ζ53 | 2ζ54+ζ52 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | complex lifted from C52⋊S3 |
ρ9 | 3 | 1 | 3 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ52+ζ5 | 2ζ54+ζ52 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | ζ5 | ζ53 | ζ52 | ζ54 | 2ζ54+ζ52 | ζ54+2ζ53 | 2ζ52+ζ5 | ζ53+2ζ5 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | complex lifted from C52⋊S3 |
ρ10 | 3 | -1 | 3 | 2ζ54+ζ52 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ52+ζ5 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | -ζ53 | -ζ54 | -ζ5 | -ζ52 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ53+2ζ5 | ζ54+2ζ53 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | complex lifted from C52⋊S3 |
ρ11 | 3 | -1 | 3 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ52+ζ5 | 2ζ54+ζ52 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | -ζ5 | -ζ53 | -ζ52 | -ζ54 | 2ζ54+ζ52 | ζ54+2ζ53 | 2ζ52+ζ5 | ζ53+2ζ5 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | complex lifted from C52⋊S3 |
ρ12 | 3 | 1 | 3 | 2ζ54+ζ52 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ52+ζ5 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | ζ53 | ζ54 | ζ5 | ζ52 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ53+2ζ5 | ζ54+2ζ53 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | complex lifted from C52⋊S3 |
ρ13 | 3 | -1 | 3 | ζ53+2ζ5 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | -ζ52 | -ζ5 | -ζ54 | -ζ53 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ54+ζ52 | 2ζ52+ζ5 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | complex lifted from C52⋊S3 |
ρ14 | 3 | 1 | 3 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | ζ53+2ζ5 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | ζ54 | ζ52 | ζ53 | ζ5 | ζ53+2ζ5 | 2ζ52+ζ5 | ζ54+2ζ53 | 2ζ54+ζ52 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | complex lifted from C52⋊S3 |
ρ15 | 6 | 0 | 6 | 1+√5 | 1-√5 | 1+√5 | 1-√5 | -3+√5/2 | -3-√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√5 | 1+√5 | 1+√5 | 1-√5 | -3+√5/2 | -3-√5/2 | -3+√5/2 | -3-√5/2 | orthogonal lifted from C52⋊S3 |
ρ16 | 6 | 0 | -3 | 1+√5 | 1-√5 | 1+√5 | 1-√5 | -3+√5/2 | -3-√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -3ζ3ζ54-2ζ3ζ52+ζ3ζ5-ζ3-2ζ54-ζ52 | -2ζ3ζ54-3ζ3ζ53+ζ3ζ52-ζ3-ζ54-2ζ53 | -3ζ32ζ54-2ζ32ζ52+ζ32ζ5-ζ32-2ζ54-ζ52 | ζ3ζ53-3ζ3ζ52-2ζ3ζ5-ζ3-2ζ52-ζ5 | orthogonal faithful |
ρ17 | 6 | 0 | -3 | 1+√5 | 1-√5 | 1+√5 | 1-√5 | -3+√5/2 | -3-√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -3ζ32ζ54-2ζ32ζ52+ζ32ζ5-ζ32-2ζ54-ζ52 | ζ3ζ53-3ζ3ζ52-2ζ3ζ5-ζ3-2ζ52-ζ5 | -3ζ3ζ54-2ζ3ζ52+ζ3ζ5-ζ3-2ζ54-ζ52 | -2ζ3ζ54-3ζ3ζ53+ζ3ζ52-ζ3-ζ54-2ζ53 | orthogonal faithful |
ρ18 | 6 | 0 | -3 | 1-√5 | 1+√5 | 1-√5 | 1+√5 | -3-√5/2 | -3+√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -2ζ3ζ54-3ζ3ζ53+ζ3ζ52-ζ3-ζ54-2ζ53 | -3ζ32ζ54-2ζ32ζ52+ζ32ζ5-ζ32-2ζ54-ζ52 | ζ3ζ53-3ζ3ζ52-2ζ3ζ5-ζ3-2ζ52-ζ5 | -3ζ3ζ54-2ζ3ζ52+ζ3ζ5-ζ3-2ζ54-ζ52 | orthogonal faithful |
ρ19 | 6 | 0 | 6 | 1-√5 | 1+√5 | 1-√5 | 1+√5 | -3-√5/2 | -3+√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√5 | 1-√5 | 1-√5 | 1+√5 | -3-√5/2 | -3+√5/2 | -3-√5/2 | -3+√5/2 | orthogonal lifted from C52⋊S3 |
ρ20 | 6 | 0 | -3 | 1-√5 | 1+√5 | 1-√5 | 1+√5 | -3-√5/2 | -3+√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | ζ3ζ53-3ζ3ζ52-2ζ3ζ5-ζ3-2ζ52-ζ5 | -3ζ3ζ54-2ζ3ζ52+ζ3ζ5-ζ3-2ζ54-ζ52 | -2ζ3ζ54-3ζ3ζ53+ζ3ζ52-ζ3-ζ54-2ζ53 | -3ζ32ζ54-2ζ32ζ52+ζ32ζ5-ζ32-2ζ54-ζ52 | orthogonal faithful |
ρ21 | 6 | 0 | -3 | 4ζ52+2ζ5 | 4ζ54+2ζ52 | 2ζ54+4ζ53 | 2ζ53+4ζ5 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ53-2ζ5 | -2ζ52-ζ5 | -ζ54-2ζ53 | -2ζ54-ζ52 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | complex faithful |
ρ22 | 6 | 0 | -3 | 2ζ54+4ζ53 | 2ζ53+4ζ5 | 4ζ52+2ζ5 | 4ζ54+2ζ52 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2ζ54-ζ52 | -ζ54-2ζ53 | -2ζ52-ζ5 | -ζ53-2ζ5 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | complex faithful |
ρ23 | 6 | 0 | -3 | 4ζ54+2ζ52 | 2ζ54+4ζ53 | 2ζ53+4ζ5 | 4ζ52+2ζ5 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2ζ52-ζ5 | -2ζ54-ζ52 | -ζ53-2ζ5 | -ζ54-2ζ53 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | complex faithful |
ρ24 | 6 | 0 | -3 | 2ζ53+4ζ5 | 4ζ52+2ζ5 | 4ζ54+2ζ52 | 2ζ54+4ζ53 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ54-2ζ53 | -ζ53-2ζ5 | -2ζ54-ζ52 | -2ζ52-ζ5 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | complex faithful |
(1 42 32 11 26)(2 33 27 43 12)(3 34 19 44 13)(4 45 35 14 20)(5 36 21 37 15)(6 28 22 38 16)(7 39 29 17 23)(8 30 24 40 18)(9 31 25 41 10)
(1 32 26 42 11)(2 12 43 27 33)(4 35 20 45 14)(5 15 37 21 36)(7 29 23 39 17)(8 18 40 24 30)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)
(1 9)(2 8)(3 7)(4 6)(10 11)(12 18)(13 17)(14 16)(19 23)(20 22)(24 27)(25 26)(28 35)(29 34)(30 33)(31 32)(38 45)(39 44)(40 43)(41 42)
G:=sub<Sym(45)| (1,42,32,11,26)(2,33,27,43,12)(3,34,19,44,13)(4,45,35,14,20)(5,36,21,37,15)(6,28,22,38,16)(7,39,29,17,23)(8,30,24,40,18)(9,31,25,41,10), (1,32,26,42,11)(2,12,43,27,33)(4,35,20,45,14)(5,15,37,21,36)(7,29,23,39,17)(8,18,40,24,30), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45), (1,9)(2,8)(3,7)(4,6)(10,11)(12,18)(13,17)(14,16)(19,23)(20,22)(24,27)(25,26)(28,35)(29,34)(30,33)(31,32)(38,45)(39,44)(40,43)(41,42)>;
G:=Group( (1,42,32,11,26)(2,33,27,43,12)(3,34,19,44,13)(4,45,35,14,20)(5,36,21,37,15)(6,28,22,38,16)(7,39,29,17,23)(8,30,24,40,18)(9,31,25,41,10), (1,32,26,42,11)(2,12,43,27,33)(4,35,20,45,14)(5,15,37,21,36)(7,29,23,39,17)(8,18,40,24,30), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45), (1,9)(2,8)(3,7)(4,6)(10,11)(12,18)(13,17)(14,16)(19,23)(20,22)(24,27)(25,26)(28,35)(29,34)(30,33)(31,32)(38,45)(39,44)(40,43)(41,42) );
G=PermutationGroup([[(1,42,32,11,26),(2,33,27,43,12),(3,34,19,44,13),(4,45,35,14,20),(5,36,21,37,15),(6,28,22,38,16),(7,39,29,17,23),(8,30,24,40,18),(9,31,25,41,10)], [(1,32,26,42,11),(2,12,43,27,33),(4,35,20,45,14),(5,15,37,21,36),(7,29,23,39,17),(8,18,40,24,30)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45)], [(1,9),(2,8),(3,7),(4,6),(10,11),(12,18),(13,17),(14,16),(19,23),(20,22),(24,27),(25,26),(28,35),(29,34),(30,33),(31,32),(38,45),(39,44),(40,43),(41,42)]])
Matrix representation of C52⋊D9 ►in GL5(𝔽181)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 135 | 0 | 102 |
0 | 0 | 0 | 125 | 0 |
0 | 0 | 0 | 0 | 125 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 125 | 0 | 14 |
0 | 0 | 0 | 1 | 33 |
0 | 0 | 0 | 0 | 42 |
127 | 131 | 0 | 0 | 0 |
50 | 177 | 0 | 0 | 0 |
0 | 0 | 161 | 1 | 38 |
0 | 0 | 33 | 0 | 100 |
0 | 0 | 41 | 0 | 20 |
50 | 54 | 0 | 0 | 0 |
4 | 131 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 87 |
0 | 0 | 1 | 0 | 94 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(181))| [1,0,0,0,0,0,1,0,0,0,0,0,135,0,0,0,0,0,125,0,0,0,102,0,125],[1,0,0,0,0,0,1,0,0,0,0,0,125,0,0,0,0,0,1,0,0,0,14,33,42],[127,50,0,0,0,131,177,0,0,0,0,0,161,33,41,0,0,1,0,0,0,0,38,100,20],[50,4,0,0,0,54,131,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,87,94,1] >;
C52⋊D9 in GAP, Magma, Sage, TeX
C_5^2\rtimes D_9
% in TeX
G:=Group("C5^2:D9");
// GroupNames label
G:=SmallGroup(450,11);
// by ID
G=gap.SmallGroup(450,11);
# by ID
G:=PCGroup([5,-2,-3,-3,-5,5,101,66,182,2888,10804,4284]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^5=c^9=d^2=1,c*b*c^-1=a*b=b*a,c*a*c^-1=d*a*d=a^3*b^2,d*b*d=a*b^2,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of C52⋊D9 in TeX
Character table of C52⋊D9 in TeX